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Phase transitions in operational risk
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In this paper we explore the functional correlation approach to operational risk. We consider networks with

heterogeneous a priori conditional and unconditional failure probability. In the limit of sparse connectivity,
self-consistent expressions for the dynamical evolution of order parameters are obtained. Under equilibrium
conditions, expressions for the stationary states are also obtained. Consequences of the analytical theory
developed are analyzed using phase diagrams. We find coexistence of operational and nonoperational phases,
much as in liquid-gas systems. Such systems are susceptible to discontinuous phase transitions from the
operational to nonoperational phase via catastrophic breakdown. We find this feature to be robust against

variation of the microscopic modeling assumptions.
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I. INTRODUCTION

Management and mitigation of risk events are major con-
cerns for banks. The goal is twofold: first, quantitatively as-
sess the risk in terms of potential financial loss and second,
develop solutions to control and buffer the impact of these
losses. To facilitate systematic analysis, risk events are
broadly classified into three categories: (i) market risk (MR),
(ii) credit risk (CR), and (iii) operational risk (OR). MR re-
fers to fluctuations in stock indices, changes in interest rates,
foreign exchange parities or commodity (e.g., gold, oil, etc)
prices. CR refers to loan defaults when companies go bank-
rupt. Research on understanding risk and developing sophis-
ticated models has traditionally focused on MR and CR,
while OR was initially subsumed under “other,” noncredit or
market risks. Subsequent spectacular catastrophes including
the bankruptcy of the Orange County municipality, Califor-
nia, USA in 1994 [1] and the collapse of Baring Investment
Bank, London, United Kingdom in 1995 [2], which were
neither attributed to MRs nor CRs, helped establish OR as a
risk category of its own. The Basel Committee for Banking
Supervision (BCBS), an international regulatory body, now
stipulates that banks must explicitly reserve a portion of
equity capital against OR.

Note that the above listed three main risk categories are
not intended to be exhaustive. Other risk categories exist
(e.g., liquidity risk is an important category for bank man-
agement, or fiduciary and compliance risks, which arise from
the judicial responsibilities of the banks’ customers). De-
pending on circumstances, these may indeed outweigh the
importance of the three “main” risk categories mentioned
above.

The Basel IT document [3], released by BCBS in 2001 and
revised in 2005, is a guideline on banking regulation. Under
Basel II, OR is defined as the risk of losses resulting from
inadequate or failed internal processes, people and systems,
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or from external events. From a practical and management
perspective it is reasonable to categorize ORs as events
based on causes and specific effects. Possible categoriza-
tions, as described in Ref. [4], are (i) human processing er-
rors, (ii) human decision errors, (iii) system (software or
hardware) errors, (iv) process design errors, (v) fraud and
theft, and (vi) external damages.

To quantify the capital that must be allocated for opera-
tional failures, Basel I suggests three methodologies: (i) ba-
sic indicator approach (BIA), (ii) standardized approach
(SA), and (iii) advanced measurement approach (AMA). Un-
der BIA, the required capital is determined by taking 15% of
the banks’ average gross income over the previous three
years. The SA is only slightly more advanced in that the
banks’ operations are divided into eight business lines, each
of which has a specific weight. The required capital is calcu-
lated as the weighted average of the (non-negative) gross
income from the business lines over the previous three years.
Under AMA, banks are responsible for designing their own
measurement approach and setting assumptions on the loss
distribution. However, banks must demonstrate that their ap-
proach captures potentially severe “tail” loss events. The use
of external and internal loss data as well as internal expertise
is permitted in the evaluation.

Under AMA, the loss distribution approach (LDA) is a
sophisticated and popular measure. Herein the required capi-
tal is determined by the value-at-risk (VaR) [2] over all OR
categories. VaR is defined, over a specified risk horizon T as
the loss not exceeded with probability ¢, in excess of the
expected loss that can happen under normal economic con-
ditions. The VaR is thus dependent on the nature of the loss
frequency and severity distributions.

Choices for the loss severity distribution function include
log-normal, Gamma, Beta and Weibull distributions. A Pois-
son or negative binomial distribution is often used for the
loss frequency distribution. The common approach to esti-
mate the loss distribution is to first assume that OR catego-
ries are independent. Subsequently, for each category i, one
draws a realization N; from the loss frequency distribution
and samples N; realizations of the loss severity
X!"(m=1,...,N;). The loss is then calculated as
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N;
Li=2 X" (1)

m=1

Finally, drawing a histogram of outcomes of normalized L;
one obtains the loss distribution for each category. The capi-
tal to be allocated is the VaR of the sum of losses over all
categories, given a time horizon 7 and confidence level q.

Subsequent developments in modeling OR have focused
on incorporating more realistic loss frequency and severity
distributions. In Ref. [5], Chernobai and Rachev provide evi-
dence in favor of using Stable Paretian Distributions. Simi-
larly, in Ref. [6] Allen er al. incorporate a generalized Pareto
distribution.

A critical point concerning LDA and subsequent analyti-
cal development is the assumption of independence between
various OR categories. However, a moment’s reflection will
lead us to realize that these categories, which may be con-
ceptualized as sets of processes, are functionally dependent.

To put this in context we illustrate it with the collapse of
Baring Investment Bank. A trader in the banks’ Singapore
office hid trading losses by forging official documents (trad-
ing decision errors resulting in fraud), thereby allowing dis-
crepancies to go un-noticed by higher officials. Pleased with
his apparent performance, the bank made a mistake of retain-
ing him as Chief Trader (process design error in light of the
bank not having adequate checks and balances, which led to
decision errors by the banks’ managers). In December 1994,
compounded by increasing losses and in order to overcome
the predicament, the trader bet on the Tokyo Stock Ex-
change, assuming that the index would not fall below 19 000.
However, in January 1995 a devastating earthquake hit the
Japanese city of Kobe, resulting in the index to plummet by
7% in one week, and below 19 000 (series of decision errors
compounded by external damage). By the time the bank dis-
covered what had happened, the trader had lost U.S. $1.3
billion, effectively bankrupting the bank.

This example shows that the assumption of independence
between processes is not realistic. Recent efforts have there-
fore been directed to capture the influence of interactions
between processes. A model based on the lattice gas analogy
was proposed in Ref. [7]. Investigations were conducted via
Monte Carlo (MC) simulations and using a mean-field ap-
proximation for a homogeneous and fully connected process
network. The model parameters were shown to be related to
both conditional and unconditional failure probabilities. Fur-
thermore, avalanches of process failures were shown to be
possible through bubble nucleation as in first order phase
transition. This model was subsequently elaborated by Lei-
pold and Vanini [8]. In Ref. [9], Clemente and Ramano
present a case study, substantiated by MC simulations, incor-
porating realistic dependences between processes.

At this point, it is important to note that the concept of
OR is not restricted to the banking industry, but is also sys-
temic to any large economy or commerce. Over the past few
decades, markets have been subject to considerable de-
regulation and globalization. These forces, coupled with an
increasing reliance on sophisticated information technology
have allowed businesses to develop more efficient opera-

PHYSICAL REVIEW E 75, 016111 (2007)

tional practices, which include business processes outsourc-
ing and automated data collection, storage and retrieval tech-
niques. These advances have led to increased mutual
dependencies between economic processes, resulting in a
heightened susceptibility for catastrophic breakdowns and
thus significant financial losses. A through understanding of
the dynamics of interacting process networks is more than
ever desirable.

Therefore, in consideration of the above, the aim of the
present paper is twofold: (i) provide detailed analytical un-
derpinning for the main findings of Ref. [7] and (ii) in doing
so, broaden the scope of that investigation to highlight the
fact that the possibility of catastrophic breakdown in net-
works of interacting processes is a robust phenomenon under
variation of the underlying model assumptions.

The remainder of the paper is organized as follows. In
Sec. I we introduce our model. Section III begins by intro-
ducing three distinct techniques, covering nonequilibrium
dynamics and equilibrium statistical mechanics, which we
use to derive dynamical evolution and stationary state solu-
tions. In Sec. III A we detail a heuristic solution, valid in the
case of asymmetric, uncorrelated interactions between pro-
cesses. In Sec. III B a more systematic study, based on a
generating functional analysis (GFA) and valid for an arbi-
trary degree of interaction symmetry is provided. In Sec.
IIT C we investigate the stationary behavior of a fully sym-
metric network using techniques from equilibrium statistical
mechanics. In Sec. IV we produce phase diagrams for pro-
cess networks, exhibiting regions in parameter space where
operational phases coexist with non-operational phases. We
subsequently evaluate a loss distribution and thereby extend
the scope of LDA to account for correlations between pro-
cesses. Finally, in Sec. V we provide concluding remarks and
describe possible extensions for further work. Some of the
more technical details from GFA and analysis of stationary
states are relegated to Appendixes A and B, respectively.

II. MODEL DEFINITIONS

In this section we describe the statistical model of inter-
acting processes, which was previously introduced in Ref.
[7]. Each process i (i=1,...,N) is defined by its state at time
t, which is referred to as 7;(r). A two-state model is consid-
ered: 7,(r) €{0,1}. At time ¢ a process can be either up and
running, 7,(¢)=0, or broken down, 7,(f)=1. In order to main-
tain a stable running state over the time increment t—17+1,
each process i needs to receive support at time #, which is
denoted U,(t) and takes the form

Ui0) = 9= 2 Jym(1) = £(1). 2)
J

Here, U; € R denotes the average support received by a pro-
cess in a fully functional environment, while J;; € R repre-
sents the impact on the average support if process j breaks
down. Finally, the &(r) are zero mean, Gaussian random
fluctuations, which represent non-systematic internal and ex-
ternal perturbations to the environment (e.g., fire, earth-
quake, voltage fluctuations within electric supplies, etc.).
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A process breaks down in the next time step if U;(r) <O0.
Thus, the dynamics of a processes’ state is given by

r+ 1) =0 2 S0 = 9+ £60). (3)
J

where O(---) represents the Heaviside function. The time
step is taken to represent one day.

By suitable rescaling of the average support and impact
parameters ¥; and J;;, respectively, the &(r) can be taken to
have unit variance. The rescaled variables, can then be re-
lated to the unconditional and conditional failure probabili-
ties. Consider a situation wherein all processes are working
at time step ¢. The probability that process i will break down
in the next step, referred to as p;, is given by integrating Eq.
(3) over the noise &(r). Thus

pi=®(= ), 4)

where @(x):%[l +erf(%)]. Similarly, defining p;; as the
probability process i will break down in the next step, given
that currently process j is broken down while all others are
working, gives us

Pij = (D(Jij_ ). (5)

These relations may be inverted to obtain expressions for the
model parameters in terms of the failure probabilities

9,=—Dd!(p), ]ij:q)_l(pi\j) -0 (p). (6)

In general, this model is not analytically tractable. In Ref.
[7] investigations were conducted via MC simulations and
using a mean-field approximation for a homogeneously con-
nected network with uniform conditional and unconditional
failure probabilities. In what follows, we study and solve the
model in a more interesting regime where conditional and
unconditional failure probabilities are heterogeneous across
the system.

We begin by noting that if J;; <0, the breakdown of pro-
cess j adds support and is beneficial to process i, i.e., the two
processes are competing. Such a situation is undesirable, but
tends to occur on a small scale in large organizations. Thus,
when considering a primarily cooperative environment, it is
desirable to have, with high probability, J;;>0.

In our framework, each process does not interact with all,
but instead a fraction of the other processes. We explicitly
incorporate this feature by decomposing

Jij=ciilijs (7)

where ¢;; € {0, 1} are connectivity coefficients and .7,-J- e R de-
scribes the magnitude of impact. We assume c;;=c;;. While
this is a reasonable assumption, it is important to realize that
the impact magnitudes are not necessarily symmetric. For
example, consider a mainframe computer connected to a
dummy terminal computer. If the mainframe crashes, we
cannot use the terminal. However, if the terminal computer
breaks down, it is highly unlikely that it would effect the

operations of the mainframe. Thus, in general, Z-ﬂéjji. The
connectivity coefficients are described by the following dis-
tribution:
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P(c;) = (1 - f}) B 01+ ]% By 11 )

where ¢ € R* is the average connectivity per process. In the
case of finite N, the adjacency matrix describes an Erdos-
Rényi random graph [10].

In what follows we consider the extreme dilution limit,
wherein N— o, ¢— o0, such that ¢/N—0. This is achieved
by taking ¢c=O[In(N)]. This assumption has important impli-
cations on the structure of the connectivity graph. Firstly,
each node in the graph will be connected to a vanishing
fraction of the total number of nodes. Secondly, the length of
a loop is O[In(N)] [11]. Thus, taking N— e, the probability
of finding loops of finite length tends to 0. The environment
about each node is locally treelike.

The magnitude of the impact parameters f,] are taken to
be quenched, i.e., fixed random quantities. To allow for the
thermodynamic limit N— and ¢— o the mean and vari-

ance of the 7,-] must scale with ¢. We put

~ J J
Jij= =4 T Xij» ©)
¢ e

where the x;; are zero mean and unit variance random vari-

ables. The mean and variance of jij are parametrized by J,
e R and J € R, respectively. We note that if J,>0 the inter-
actions between processes are, on average, supportive, which
is the regime of interest. Secondly small J suppresses the

probability of having of negative f” In addition, small J
reduces the effects of frustration [12]. Finally, we choose the
X;; to be independent in pairs and have the following mo-
ments:

X;;=0, XjXq= 080+ adindn- (10)

The parameter « € [0, 1] describes the degree of correlations
between jij and ] ji» with fully symmetric interactions given
by a=1.

III. MODEL SOLUTIONS

Here we investigate the dynamics and the stationary states
of the model introduced in Sec. II. For uncorrelated interac-
tions, i.e., @=0, a solution can be obtained by a heuristic
argument, following lines of reasoning previously used to
study statistical mechanics of disordered systems, in particu-
lar neural networks [11-13]. This solution relies on assuming
weak and negligible correlations between the quenched and
dynamic random variables, which cannot be easily justified
in a rigorous manner.

A more exact and formal treatment of the dynamics is
possible using generating functional analysis (GFA) [14].
This technique facilitates the evaluation of order parameters
ab initio and is applicable for arbitrary degree of correlation,
a, between processes. In addition, it provides a nontrivial
check to show that the heuristic solution is exact.

Finally, for fully symmetric networks, =1, we study the
stationary states using techniques from equilibrium statistical
mechanics. This requires the use of thermal instead of Gauss-
ian noise.
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A. Heuristic solution

We begin by observing that interactions of process i are
described by the local field h,(r)=2 jcijjijnj(t). The state
7i(t+1) depends on the #,(¢) that contribute to /,(¢). Further-
more, the states 7;(1) depend on 7,(t—1) through /i;(1—1).
There is feedback in the system, which induces correlations
between the local fields at time ¢.

In the present mean-field approach we evaluate the statis-
tics of h;(r) by appealing to the law of large numbers and
central limit theorem. The applicability of these tools relies
on assuming that the contributions to /;(r) are weakly corre-
lated if not independent. The condition a=0 together with
the limit of sparse connectivity, ¢/N— 0, entail that contri-
butions to /,(¢) are uncorrelated at finite times. This allows
us to describe A;(7) as a Gaussian random quantity.

Concentrating on the local field 4;(), we incorporate the
definition of J;; given by Eq. (9) to rewrite the expression as

J J
hi(t) = =22 cmi(0) + ~= 2 e (0). (11)
¢ Ve

In the limit N— o, the mean and variance of h;(f) are given
by

IR | iy
()~ =12 (n0) (12)
J
and
g Py ——Cijy
o (h(1) = ﬁz (77j(t)> , (13)
J

respectively [11]. The angled brackets {(- --)) refer to the av-
erage over noise terms, &(1), while the overbar (---) —  re-

fers to the average over the coupling parameters c;; and x;;.
In deriving these results, one assumes that correlations

between dynamical degrees of freedom 7,(r) and the x;; and

c;; that characterize disorder, are negligible. This allows fac-

toring  of of the cixi{mi(t))
— CijXij v CijsXij . .

=X "0y Y. The fraction m(t+1) of failed pro-

cesses at the next timestep, £+ 1, evaluates to

Cijij

averages form

1
m(r+ )=~ pi+ 1) = ]%[2 OL,(1) — 0, + &(1)].

(14)

In the limit N— o, Eq. (14) can be evaluated by appealing to
the law of large numbers as a sum of averages over the
random variables h(1), &(t) and 9. As h;(r) and &(1) are
Gaussian random variables, their sum is also Gaussian, with
mean Jym(t) and variance 1+J%m(t). Thus, first performing
the joint average over local fields and noise, we obtain

1 Jom(t) = O;
NE cb("m;) (15)

m(t+1)=
i V1 +J2m(t)

Finally, we note that the only i dependence in Eq. (15) comes
from the ;. Thus, in the limit N— %, we obtain an average
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9
over the 9 distribution [21], which we denote by (---) ,
giving
-
Jom(t) — O
m(t+1)=®<%) . (16)
V1 +Jm(z)

We have thus obtained a simple closed expression for the
evolution of the faction of failed processes in the network.

B. Generating functional analysis

Investigations of the dynamical properties of a system are
conducted systematically employing GFA [14], which pro-
vides tools for the evaluation of correlation and response
functions in terms of a characteristic functional of path prob-
abilities. Performing the average over bond disorder in the
sum over dynamical trajectories, one obtains a family of ef-
fective single site processes parametrized by U,

7t +1)= 0| Jyn(t) + >, G(t,5)7(s) — O + (1) + h(r) |

(17)

These single site processes exhibit memory, via the response
function, G(¢,s), and are driven by colored Gaussian noise
{&(1)} self-consistently determined via

() B0) = &+ Pas.1). (18)
Y
m(t) = {70} - (19)
4(5.0) = ) 7D} - (20)
dm(1)
G(t,s) = (S'h(s)’ s<t. (21)

Here ((--)) refers to average over {¢(r)}. The external field
h(t) is primarily introduced to define the response function
via Eq. (21). The derivation and interpretation of these pa-
rameters are provided in Appendix A. The order parameter
m(t), Eq. (19), describes the dynamics of the fraction of
failed processes.

In the case a=0, we recover Eq. (16), which was derived
via purely heuristic reasoning in Sec. III A. However, for
arbitrary «, the response function complicates averaging
over {¢p(1)}. In these cases, numerical results for Egs.
(19)—(21) are obtained using Eissfeller-Opper (EO) simula-
tions [15]. A key concern in performing the simulations is
producing colored noise. Our method uses a Cholesky de-
composition [16] of the noise covariance matrix. We con-
struct colored noise as a linear combination of white noises
weighted with elements of the Cholesky matrix.

C. Equilibrium statistical mechanics

A process network of the form described in Sec. II is
guaranteed to achieve a stationary probability distribution for
its microscopic states, if we assume a=1 and use thermal
noise, distributed according to
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PO=3 B sechZ(Bf), (22)

instead of Gaussian noise, as in Eq. (3). The parameter 3 is
called the inverse temperature. The Gibbs-Boltzmann equi-
librium distribution is characterized by the Hamiltonian

H(’?)=—Ecij7ij77i77j+2 B (23)

i<j i

A solution of this model, with disorder variables ¥;, ¢;;, and
x;;» given by Egs. (7)—(10), is achieved with techniques used
to solve the Sherrington-Kirkpatrick spin-glass [17] model.
In this spirit, the replica-symmetric (RS) order parameters
are obtained from the extensive free energy as solutions of
the following pair of self-consistency equations

)

m= J Dz®g(hgs) » (24)
_ %

q= f Dz®%(hgs) (25)

where
@Ax):%[l +tanh<%)} (26)

and
2

hRS:—19+JOm+JV”qZ+IBTJ(””_CI)- (27)

Derivations are provided in Appendix B. The order param-
eter m, Eq. (24), describes the stationary fraction of failed
processes.

The stability of this solution against replica symmetry
breaking (RSB) was checked by verifying that the Hessian at
the RS saddle point is positive definite [18]. This requires
that the so called replicon eigenvalue, given by

A=1-(B))? J Dz @ glhgs) - Pplhgs)*]*  (28)

is positive. We found that for networks with parameter set-
tings as investigated in Sec. IV below, i.e., a priori homoge-
neous failure probability, p=0.01, RSB occurs only for J
=4.630. Hence, the regime of interest with small frustration,
say J<0.5, is well within the stable domain.

Comparison between the equilibrium m, Egs. (24)-(27),
and the long-term stationary behavior of m(r), Eq. (19), with
a=1 is possible, once we scale the thermal noise appropri-
ately to match properties of the Gaussian noise. In principle,
such a matching may be accomplished in several different
manners, each of which leads to similar results. Here, we
prescribe that the thermal noise should have the same unit
variance as the Gaussian noise used in the microscopic dy-
namics. This leads to B=m/V3.
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IV. RESULTS

In this section we explore the consequences of theory de-
veloped above, with particular emphasis on phase diagrams
of resulting stationary states. For simplicity, we assume ho-
mogeneous U, which allows us to drop the corresponding
U-averages. We justify this simplification by noting that any
other nontrivial ¥ distribution, for example, Gaussian with
mean 9 and variance o , would not alter the qualitative be-
havior of the observables. We illustrate this for the fully
asymmetric network, a=0. To evaluate Eq. (14) we exploit
that the sum of Gaussian terms h(f)—0;+&(1) is itself a
Gaussian with mean Jym(f)—9 and variance 1+12m(t)+0%,.
This gives

Jom(1) = O ) 29)

i+ 1) CD( VI +2m(0) + o
Up to a shift in the variance of the noise, this equation de-
scribes the evolution of a system of asymmetrically coupled
processes with uniform ;=1. For stationary states for the
fully symmetric network a=1 obtained from equilibrium sta-
tistical mechanics, a similar structural shift can be shown to

apply.

A. Fully asymmetric network

Assuming long-term stationary behavior for the observ-
able m(z), Eq. (16), we drop the time argument. The curve in
the first panel of Fig. 1 depicts m as a function of J,. We note
the coexistence of a low-m operational and a high-m nonop-
erational phase for J,, values bounded by the lower and upper
critical values, J;=3.971 and Jj=14.814, respectively.
Within this interval there is an unstable branch of solutions,
with intermediate m values, represented by the back-bending
part of the curve.

The behavior is parametrized by the unconditional failure
probability p. This dependence is made explicit in the phase
diagram, shown in the second panel of Fig. 1. The upper
curve marks the J; boundary of the low-m operational phase,
while the lower curve represents the J; bound of the high-m
nonoperational phase. A transition between the two phases is
discontinuous for p <p,.=0.102 and becomes continuous ex-
actly at p.. Beyond p,. the phases lose their separate identity,
much as in a liquid-gas system. In the region of small J,
which is of interest for OR, say J<<0.5, the behavior shown
in Fig. 1 is fairly insensitive to variation in J.

B. Partially symmetric network

Investigations of partially symmetric networks were con-
ducted via (i) evaluating the first three time steps of the ef-
fective single site dynamics exactly, starting with random
initial conditions, given by m(0), and (ii) conducting EO
simulations of the dynamics to higher time steps.

The results presented in Fig. 2, were produced for an in-
termediate value of the symmetry parameter a=0.5.

The exact evaluation of the first three time steps is de-
picted in the first panel. The curves represent the fraction of
failed processes at each time as a function of J,. We observe

016111-5



KARTIK ANAND AND REIMER KUHN

16

I L

001 002 003 004 005 006 007 008 009 01 0O

(b) p

FIG. 1. First panel: Stationary observable m as a function of J,.
The homogeneous unconditional failure probability is p=0.01. Sec-
ond panel: Phase diagram showing critical values of Jy, as a func-
tion of p, where the operational (upper curve) and nonoperational
(lower curve) phases become unstable. In producing both diagrams,
we set J=0.2.

that these curves intersect the line m(0)=0.3 at exactly the
same point, Jg ~6.001, which marks a change in behavior.
For J0<Jg, a convergence to the low-m operational phase is
realized, while for J0>Jg, we observe convergence to the
high-m nonoperational phase. Except in the immediate vicin-
ity of Jg, the convergence is rapid and achieved within the
first three time steps.

To investigate the behavior beyond the first three time-
steps, we used EO simulations to propagate Egs. (17)—(21)
up to r=30. This time horizon is sufficient to achieve station-
arity, except in an infinitesimal neighborhood of the critical
Ji, values. In the second panel of Fig. 2 we provide the sta-
tionary m value as a function of J,. The coexistence of the
low-m operational phase and high-m nonoperational phase is
observed for intermediate J, in complete analogy to the fully
asymmetric case. These J, values are bounded between the
critical values, J;=3.966 and Jj= 14.513. Here, the unstable
branch, represented by the back-bending curve, is computed
by locating the Jg values that separate the regions of conver-
gence towards either the operational or nonoperational
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FIG. 2. First panel: First three time steps of m(z) for =0.5 and
initial condition m(0)=0.3, as a function of J,. The curves m(1),
m(2), and m(3) are given in order of increasing steepness about
their intersection with m(0). Second panel: Stationary value of m as
a function of J, from EO simulations, with «=0.5 and p=0.01.

phase. It is noteworthy that we obtain an almost identical
unstable branch if we use the exact forms of the first three
time steps.

C. Fully symmetric network

Investigations of fully symmetric networks, a=1, were
conducted via (i) appealing to equilibrium statistical mechan-
ics, Egs. (22)—(27), and (ii) EO simulations. To compare the
two results, we scaled the thermal noise to have unit vari-
ance, resulting in =/ \5

In the first panel of Fig. 3, we plot values of m as a
function of J,. The dotted line was produced using tech-
niques from equilibrium statistical mechanics. The solid line
was produced from EO simulations for a=1. In both cases,
the coexistence of a low-m operational and a high-m nonop-
erational phase, for intermediate values of J, is observed.
The coexistence regions are given by the intervals
[4.113,20.478] and [3.966,14.512] for the networks with
thermal and Gaussian noise, respectively. Whereas the criti-
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FIG. 3. First panel: Comparisons between stationary values of m
for a=1.0 for networks with Gaussian noise (solid line) to networks
with thermal noise (dotte_d line), as functions of J,. The inverse
temperature was B=/\3, and the a priori homogeneous failure
probability is p=0.01. Second panel: Phase diagram of the network
with thermal noise. In producing both diagrams, we set J=0.2.

cal values for the non-operational phase are almost identical,
a significant discrepancy for the upper critical value is ob-
served. This discrepancy must be attributed to differences in
the nature of the noises.

In the second panel of Fig. 3, we produce the phase dia-
gram for the system with thermal noise. We observe a similar
qualitative behavior to the fully asymmetric case, a=0,
given in Fig. 1. The critical point p.~0.110 is very close to
that from the asymmetric case, p.=~0.102.

D. Loss distribution and capital requirement

Finally, in Fig. 4 we show a loss distribution for a network
of 50 processes. The stationary macroscopic variable m rep-
resents the fraction of failed processes. Alternatively, m rep-
resents the probability that a process breaks down within an
interacting environment. That is, effects of functional corre-
lations with other processes in the network have been ac-
counted. We proceed by drawing from a binomial distribu-
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FIG. 4. Loss distribution for a network of 50 processes con-
structed using the LDA. A binomial distribution, with mean m
=0.01, was used for the loss frequency distribution. A log-normal
distribution, with mean =35 and variance 02=175, was used for the
loss severity distribution.

tion, for each process i the number k; of days in a year the
process fails. The daily failure probability is given by m.
Failures on different days are taken to be independent. Sub-
sequently binning the sum of k; realizations from the log-
normal loss severity distribution for each process, we obtain
the loss distribution for the network.

In the thermodynamic limit one would expect the loss
distribution to be a Gaussian by the central limit theorem.
However, for N=50 the distribution is still heavily skewed to
the right with a “fat” tail and rare realizations of extremely
large losses.

A qualitative study was also conducted to determine the
effects of functional correlations on the VaR. Recall that un-
der LDA, VaR is used to determine the capital to be allocated
for ORs. We consider a fully asymmetric network with ho-
mogeneous unconditional and conditional failure probabili-
ties. First, for a noninteracting environment, the loss fre-
quency distribution is binomial with daily failure probability,
m= (). Using the construction as described afore, the loss
distribution was evaluated and (VaR),, calculated for a con-
fidence level ¢=99.99%. Next, for the interacting environ-
ment, the loss frequency distribution is once more binomial.
However the daily failure probability, m is now given by the
stationary operational solution to Eq. (16), as a function of
Jo. The loss distributions are evaluated and the VaR deter-
mined for the same confidence level. In Fig. 5 we plot the
ratio VaR to (VaR), as a function of J,,. A significant increase
in the VaR is clearly discernible. This is mainly driven by
interactions induced through increasing J,, which enlarges
the daily failure probability, m. As Fig. 5 illustrates, for a
company with a high degree of interdependence between
processes, (VaR), does not capture the true extent of risk.

V. CONCLUSION

In this paper we investigated networks of interacting and
functionally correlated processes as models of OR in large
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FIG. 5. Ratio of VaR to (VaR)y, as a function of J,. We consider
a network of 50 processes with J=0.2, over a risk horizon of 365
days. The data is fitted against a quadratic curve, represented by the
dashed line.

organizations. In the limit of sparse connectivity, we studied
the dynamical evolution and stationary states of these net-
works using analytical methods and numerical simulations.
A heuristic approach was used to exactly solve the dynamics
of fully asymmetric networks. GFA and EO simulations were
used to study the dynamics of partially and fully symmetric
networks. Finally, stationary states for fully symmetric net-
works were analyzed using techniques from equilibrium sta-
tistical mechanics.

The initial variant of our model was formulated on a
sparsely connected random graph, for which the average
connectivity per process c, satisfies, c¢/N— 0 in the thermo-
dynamic limit. However, it should be noted that the assump-
tion needed to carry through the GFA as described in this
paper is ¢>1 rather than sparseness. Hence, the analysis
applies to networks with non-sparse connectivity with ¢
=O(N) as well.

From all investigated cases, we found that there exists a
range of interactions, characterized by J,, for which an op-
erational phase coexists with a non-operational phase. This
raises the possibility of spontaneous catastrophic breakdown
in such process networks. We demonstrated this feature is
robust and invariant under a broad range of changes in mi-
croscopic details.

Phase diagrams were produced for fully asymmetric net-
works using the exact dynamical theory and for fully sym-
metric networks using the results from equilibrium statistical
mechanics. Similar behavior is observed in both cases. For
sufficiently small values of a priori failure probability p, the
operational and non-operational phases are distinct; a discon-
tinuous transition between phases can be induced, for in-
stance, by changing J,. There is a critical failure probability
p.» where the transition is continuous. We also note that the
two critical values, p.~0.102 for the fully asymmetric case,
and p.=0.110 for the fully symmetric case are very close.

Given parameter values p, J, and J for which stable op-
erational and nonoperational phases coexist, one can further
qualify these phases as either absolutely stable or metastable.
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These notions are well known for thermodynamic equilib-
rium systems. Therein, the absolutely stable phase is the one
with the lower value of the free energy. Parameter values at
which absolutely stable phases become meta-stable (or vice-
versa) are the locations of proper first-order equilibrium
phase transitions.

Of the systems studied in this paper, however, only the
fully symmetric network with thermal noise can be charac-
terized as a thermodynamic equilibrium system. Neverthe-
less, the notion of absolute stability and metastability of co-
existing dynamic stationary states can be carried over to the
other systems in the following manner. One denotes by 7y
the fraction of the total time a system of size N spends in one
of the coexisting stationary states, either operational or non-
operational. A state is characterized as absolutely stable if
limy_,..7y=1, and as metastable, if limy_,.,7y=0. A meta-
stable phase can nevertheless be dynamically stable in the
sense that, once in such a phase, a system will typically stay
in that phase for a very long time #y which diverges as N
— 0,

These concepts have a significant implication for OR, that
play out for large (but finite) process networks that exhibit
dynamically and absolutely stable operational phases, coex-
isting with a metastable nonoperational phases. Small
changes of the parameters characterizing the network, e.g., a
slight increase in the average mutual dependency among
processes—described in our model by a slight increase in
Jo—could entail that the operational phase becomes meta-
stable. In this case a catastrophic breakdown is bound to
occur, even under normal operating conditions. A small in-
crease in J, would result in a correspondingly small change
in the statistical properties of the network. As such, there
would be no visible precursors for the transition.

Of particular relevance in this context are a number of
current trends such as the advance of globalization, increas-
ing reliance on information technology, or the growing
modularization of business and production processes, includ-
ing outsourcing. Within our model these trends roughly cor-
respond to a trend of increasing J,; for a stable operational
phase this is equivalent to a trend of pushing that phase
towards meta-stability, hence eventually towards guaranteed
catastrophic breakdown.

A recent incident involving the retail bank HSBC out-
sourcing business processing highlights this issue [19]. The
outsourced data included bank account passwords, along
with other sensitive information to an office in Bangalore,
India. A widespread fraud, that took roots in 2002 and af-
fected one thousand of the banks’ clients was uncovered ear-
lier this year. While this did not critically affect the bank, its
vulnerability has increased. The fact that sensitive informa-
tion was outsourced to a single office shifted the banks’
stable operational phase further towards the metastability.

It is imperative that banks and other organizations assess
their stability, as described above, and check for the possible
coexistence of operational and non-operational phases. As
there are no detectable precursors for transitions between
them, the assessment must be performed by stress tests,
wherein artificial strains and fluctuations are introduced into
the system and the effects are measured. The present model
readily lends itself to tests of this type.
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In our investigation, we only considered Poisson random
graphs with large average connectivity c. As a consequence,
there is little heterogeneity in the local environment about
each process. However, it is known that realistic process net-
works exhibit a richer topology, which includes the presence
of “hubs.” In such situations, the connectivity scales accord-
ing to a power-law and the analytical treatment would follow
lines of reasoning used in small-world networks [20]. A simi-
lar qualitative behavior with coexistence of operational and
nonoperational phases is nevertheless expected.

APPENDIX A: GENERATING FUNCTIONAL ANALYSIS

In this appendix we use generating functional analysis
(GFA) [14] to formally solve the model dynamics and sys-
tematically justify the heuristic solution in Sec. III A. We
begin by introducing the generating functional over source
fields ¢

N T
Zy]= exp(—iEE%(r)m(r)) (A1)

i=1 =0

The angled brackets refer to the average over all “paths,”
which are trajectories of microscopic states. Explicitly,

T N

Z[yp= > P[{n(t)}]eXp<—iE > tﬂi(t)ﬂi(t)), (A2)
{n(0} =0 i=1

where P[{n(1)}]=P[5(0),...,n(T)] denotes the probability

of all paths over the risk horizon 7. The generating func-

tional can be used to compute expectation values and corre-

lation functions as

_ oAy
(my=i = 0 | oo (A3)
<77]( )771(t)>— (?lﬂj(s) 071,0,(t) wEO (A4)

We are interested in evaluating the generating functional
for a typical realization of disorder. This is achieved by av-
eraging Eq. (A2) over ¢;; and x;;. To proceed, we exploit that
the path probability measure has a Markov structure:

7-1

P[{n(0}]= Pl PLn(c+ DIn0]  (AS)
=0
with transition probabilities
N
Ply(t+ D|np0]=11 D& &y vy s ) (A6)
i=1

The &(1) are unit mean and zero variance Gaussian random
variables. Furthermore,

fil) = ®(E Cijjijnj(t) +hy(t) - 9; + §i(f)>' (A7)
J
1. Average over fast noise

We conduct the &,(¢) integral and disorder average by first
extracting these contributions u;(f)=> jcijzjnj(t)+§i(t) from
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the Heaviside function in f;(¢). This is facilitated utilizing a
Dirac ¢ function and its normalization property to give us

T-1 N N
Z01=3 .S Pl T TI { f di{Ddut)

20 2D =0 =1 2w

Xexp{— iﬁ,m(u,-(r) - nj(t))

(t)2 T N
:| [7I(f+l (l)] exp(_lzz l!’z(ﬁ”]z(ﬁ)

=0 i=1
(A8)
In Eq. (A8), we redefined f;(¢) to denote
fi(t) = OLuy(r) + hy(t) - 9;]. (A9)

The “hatted” conjugate terms i;(r) are a consequence of a
Fourier representation of the & function.

2. Disorder average

The disorder average, which factorize in pairs, affects c;;
and x;. We localize the terms involved in the following
definition:

Cijptiy
— . -1
CijpXij
D =Hexp[Ec,-,-(iﬁ,-(of,»,n,(r)+iﬁ,»<r)f,m,-(r>) :

i<j =0
(A10)

We first perform the c;; average, and proceed by taking
the Taylor expansion of the exponential in the limit ¢>1.
Next, taking the x; average, reexponentiating and keeping
the dominant terms, we obtain

o T-1 P T-1
D" =exp [JOE k(Om(r) + = E (O(s,0)q(s.1)
5,1=0
+ aG(s,t)G(t,s)):| (A11)

which depends on a set of macroscopic variables defined as

1 N

m(t) = ]—VEI (1)
1 N

k(t) = NE idiy(1),

N
gs.0= 3 m(s)m ).
i=1

N

00 = 3 i s)id ),

i=1

N

_ ]lvz if,(s) 7).

i=1

G(t,5)
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To achieve site factorization in the evaluation of

ZIy] ™, one proceeds as usual by enforcing the above defi-
nitions of the macroscopic variables via Dirac & function
identities and their Fourier representations. This subse-
quently generates a set of conjugate variables to the above
set of macroscopic variables. The averaged generating func-
tional is expressed in the following compact form:

2Lyl " = f D{Jexp{N[E, + B, + E3]}.  (A12)

Here, D{- -} represents taking the integral over all the mac-
roscopic order parameters, and their conjugates. The func-
tions E;, B,, and E;, appearing in the exponential of Eq.
(A12), are defined as

-1 P

H = JOE k(m(t) + = 2 [0(s,0)q(s,0) + aG(t,5)G(s,0)],

5,1=0

(A13)

-1 -1
B, =i [m()m(r) + k(Ok()]+i 2 [q(s,1)d(s,1)

=0 5,1=0

+0(s,00(s,1) + G(t,5)G(1,5)], (A14)

1Y did(H)du
=4 321 > P[9(0)] % H{ U (t)5[n<r+1>f<z>]
i=1 {n()}

T
Xexp(— S—iX yilr) 7](0)
=0

3=

(A15)

Here S denotes the dynamic action

{n(0)} =0
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T-1

S=> (-ii; GO u(t) — (042 - im(t) p(1) - lk(t)m (1)

=0

-1

+ 2 (—ig(s.0) p0) m(s) - iQ(s. it (1)id(s)
5,1=0

—iG(1,9)idt(s) m,(1)).

Thus, we have transformed the generating functional into
an integral with leading order in the exponential of N, which
can be evaluated using the saddle point technique. The con-
tribution 23, Eq. (A15) describes an ensemble of indepen-
dent dynamical processes.

3. Saddle point equations

At the saddle point, the macroscopic observables of inter-
est resolve to

N
()=~ (o),
i=1

N
gls.0= 3 w0,
i=1

Gls,1) = E (i (1)) iy (A16)

The ((--+))(; represent averages over the dynamics of effec-
tive single site processes and have the form

-1
> P[n(O)]( [ | Mj‘f‘(”mmﬂ.@ﬂ](--->e-5)

(N = G
> P[7(0)]

du(t)di(t) B
7 [ J T g€ .
{n(n)} 1=0 2m

Averages involving a conjugate field iiZ(z) describe re-
sponse functions, i.e., perturbations of expectations with re-
spect to an external field. Thus, averages involving only con-
jugate fields describe a perturbation of a constant and are set
to zero. Furthermore, by causality, G(¢,s), which describes
the response of the fraction of failed processes at time #, to a
perturbation at time s, vanishes Vs=t. Using the saddle
point identities for other order parameters and their conju-
gates, we obtain Z,=0 and Z,=0 at the saddle point. The
dynamic action reduces to

(A17)

-1
S= E{iﬁ(t)[u(z) Jon(d) - al?S G, s)n(s)]}
0 s<t

T-1

_LS a0 + 8.1,

(A18)
2 5,1=0

and it corresponds to single site processes, with dynamics
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pt+1)= (Jom(t) +al”S Glt,5)ns) — 9+ bl7) + h(t)).

s<t

(A19)

We note the following. (i) There is now a dependence on the
fraction m(r) of failed processes. (i) If there is a degree of
symmetry, a# 0, the dynamics is non-Markovian, with
memory given by the response function G(z,s). (iii) The
noise () is colored, with {(p())=0 and {(P(s)P())
=12q(s, )+ Orsal-

We recall that the only i dependence in Eqgs. (A16) and
(A17) comes from 9; in f,(t), Eq. (A9). By the law of large
numbers the empirical averages in Eq. (A16) can be evalu-
ated as an average over the U distribution

! —
;T;X;E <("‘)><t>=fdﬁp(ﬁ)<(---)>=<(...)> .

The saddle point results, Eq. (A16) thus take the form

m() = (n(0))", (A20)

q(s,0) = () 7(1)) (A21)
dm(t)

G(t,s) = (9h_(s) (A22)

In the case a=0, there is no memory effect. Eq. (A20) is
by itself sufficient to describe the dynamics. Evaluating the
¢(r) average we get

e —
Jom(t) = 9 ) ‘ (A23)

o220

V1 + Pm(r)

However, for @ # 0, memory G(t,s) is relevant. The non-

linear nature of the evolution Egs. (A19) and (A20) pre-

cludes a simple analytical characterization of the long-time
asymptotic stationary states.

APPENDIX B: EQUILIBRIUM STATISTICAL MECHANICS

For fully symmetric networks, a=1, and thermal noise, &,
distributed as

=1 e ). B1)
2 2

equilibrium statistical mechanics can be employed to study

the stationary behavior. The resulting Gibbs-Boltzmann equi-

librium distribution for observing a given microscopic state

is characterized by the Hamiltonian

H(’?)=—Zcijfij77i7lj+2 B (B2)

i<j i
We obtain the stationary macroscopic order parameter, 1,
describing the fraction of failed processes from the free en-
ergy per process. In the limit, N— o, the free energy is ex-
pected to be self averaging over the disorder
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T ——c;ix;;
f=lim — Xlln(Z) Y (B3)

N—x
The above quenched average is calculated using the “replica
trick”

L T iy
f=limlim-—1InZ"" ".
N—wn—0 Nn

(B4)

In a manner similar to that presented in Appendix A 2, we
take the average over c;; and x;;. The resulting expression for
the free energy is

T J, 2]2
O
M M,V

n—0ON—oo n {”,_L}

(B5)

-85S oar |

where

1< 1<
mu= 22 Q= 2 (B6)
i=1 i=1

The indices 1 < u, v<n label the replicas. The above param-
eters were introduced to achieve site factorization, in a man-
ner identical to that in Appendix A 2. Subsequently, the free
energy is expressed as an integral, which is evaluated via the
saddle point technique:

f=1lmlim — % In J D(-- ~)exp<N[%§ m,

n—0ON—x I

Bl
T D et 12 g+ 1 G e ae
4 a,€ a a,e

(B7)

+1n >, exp(- IBHeff)0:| ) :

{"}

Here, the effective Hamiltonian is given by

— BHer= = PO 7 =i Mg =i Gaen® 7. (BS)

Saddle point equations

We obtain the following expressions for the order param-
eters:

my={n") ", que={n"7%) , (B9)
where
> (-+)exp(~ BHey)
{7}
(=)= (B10)
> exp(— BH.g)
{7

A solution of the order parameters is achieved with the
following replica symmetric ansatz:
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my,=m, ¥V «a, (B11)

qae= mé[uz,e] + q(l - 5[0,’5]), vV ae. (Blz)

On application of the ansatz and Gaussian linearization of
quadratic replica terms, we obtain
§

- f Debylgs) - (B13)
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—
q= f Dz®%(hgs) (B14)
where ® g(x)= %[1 +tanh(%)] and
C B
hRS=—19+J0m+J\rqz+7(m—q). (B15)
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